Bølge-forskning kan hjælpe shippingbranchen

Bølge-forskning kan hjælpe shippingbranchen

Såkaldte Monsterbølger har århundreder været anset som en sømandsmyte. Men de findes, og nu har forskere fra Københavns Universitet og University of Victoria fundet formlen på, hvordan man kan forudsige dem og gøre skibstrafikken mere sikker

Historier om monsterbølger eller ekstrembølger, som de også kaldes er i århundreder blevet betragtet som mytiske vandrehistorier fortalt af søfolk. Men i 1995 ramte en 26 meter høj bølge den norske olieplatform Draupner, hvor man for første gang målte en monsterbølge med digitale instrumenter og fik beviset for, at de abnorme havbølger virkelig findes.

Siden da har bølgerne været genstand for en hel del undersøgelser. Men først nu er det lykkedes forskere fra Niels Bohr Institutet på Københavns Universitet at opfinde en matematisk model, der giver opskriften på, hvordan – og ikke mindst hvornår – de ekstreme havbølger kan opstå.

Ved hjælp af kunstig intelligens og store mængder big data om havets bevægelser kan forskerne med en algoritme forudsige, hvor stor sandsynligheden er for at blive ramt af en monsterbølge på havet på et givent tidspunkt.

-I bund og grund er det sort uheld, når en af de her meget store bølger rammer. For det er en kombination af mange faktorer, som det indtil nu ikke har været muligt at samle i et enkelt risikoestimat. I studiet har vi kortlagt de årsager, der skaber en monsterbølge og samlet dem i en model, som med kunstig intelligens kan udregne sandsynligheden for, at det faktisk sker, siger Dion Häfner.

Mere sikker skibstrafik
Forskernes algoritme er godt nyt for bl.a. shippingbranchen, som på alle tider af døgnet har omkring 50.000 fragtskibe sejlende rundt på havet. For ved hjælp af algoritmen vil man fremover være i stand til at forudsige, hvornår den "perfekte" kombination af faktorer er til stede for at skabe en monsterbølge, som kan udgøre en fare for de mennesker, der opholder sig på havet.

-Når shippingfirmaerne sidder og planlægger deres sejlruter dage i forvejen, kan de ved hjælp af vores algoritme få en risikovurdering af, om der på den rute, de har planlagt, er fare for støde ind i monsterbølger. På den baggrund kan de vælge alternative ruter, siger Dion Häfner.

Abnorme bølger opstår hver dag
Forskerne har bl.a. kombineret tilgængelige data om havets bevægelser og om havbundens udformning. Mest centralt er dog bølgedata fra i alt 150 bøjer, som året rundt 24 timer i døgnet indsamler bølgedata ud for den amerikanske kyst. Data, som samlet set rummer 700 års historik om en milliard bølgers højde og bevægelser.

De mange data har forskerne analyseret for at forstå, hvad der forårsager monsterbølger, der er defineret ved at være mindst dobbelt så store som gennemsnittet af bølger i området – herunder de helt store monsterbølger, der kan være over 20 meter høje. Den har de med machine learning omsat til en algoritme, som de har anvendt på deres datasæt.

-Vores udregninger viser, at abnorme bølger opstår hele tiden. Faktisk har vi registreret 100.000 bølger i vores datasæt, som kan defineres som monsterbølger. Det svarer til, at der opstår mellem 0,1 og 1 monsterbølge hver dag på enhver tilfældig placering på havet. Disse bølger er dog ikke allesammen monsterbølger af den helt ekstreme størrelse, forklarer Johannes Gemmrich fra University of Victoria og studiets andenforfatter.

Studiet bryder også med den gængse opfattelse af, at årsagen til, at en monsterbølge opstår er en bølge, der "stjæler"energi fra en anden og kortvarigt danner en stor bølge.
Nu slår forskerne fast, at monsterbølgerne dannes, når to bølgesystemer krydser ind over - og kort tid efter - forstærker hinanden.

Al ny viden er tilgængelig
Algoritmen og forskningen er offentlig tilgængelig, og det samme er de vejr- og bølgedata, som forskerne har brugt. Derfor kan interesserede såsom myndigheder og vejrtjenester ifølge Dion Häfner ret nemt begynde at udregne sandsynligheden for monsterbølger. Samtidig er alle mellemregninger i forskernes algoritme gennemsigtige modsat mange andre modeller lavet med kunstig intelligens.

-lipe

21/11 2023